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We present a method that we call symbolic asymptotic development (SAD) to
obtain joint probability distributions (j.p.d.’s) of phases of structure factors for
general even densities of the atomic position vectors. The formula for the triplet
and quartet invariant that we obtain in this way reduces to the well known
classical formula for the case of a uniform density of the atomic position vectors.
For the case of complete knowledge of the atomic vectors it reduces to first
order to the exact probability density of the triplet (quartet) phase invariant.
Applying this formula to the most general j.p.d. of the atomic vectors we obtain
a statistical interpretation of Hauptman’s algebraic B, and B, formulas. We
also give a heuristic derivation of the SAD method. Another method that we
shall discuss uses a method called linearization of the invariants that also
produces formulas for the triplet phase invariant. This method is based on
previous work and is also more laborious to calculate with than the SAD
method. It can also give a statistical interpretation of the B;, formula. We show
that the formula obtained for the triplet resembles the formula obtained with

SAD.
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1. Introduction

Ever since the introduction of the B, , formulas (see e.g. Karle
& Hauptman, 1957) researchers have tried to establish a
statistical interpretation of these algebraic formulas (see e.g.
Brosius, 1989b). In this paper we derive statistical formulas for
the (algebraic) B, and B,, formulas. More specifically, we
obtain a probabilistic formula for our Bj, and Bj,
formulas that are equal to the former apart from a quotient
factor.

In order to derive this Bj, (respectively By ;) formula we
need to use the most general joint probability distribution
(j.p-d.) of the atomic vector positions that can be obtained
without additional chemical knowledge. However, this j.p.d. of
the atomic vectors is not a uniform one. So we also need a
method for obtaining j.p.d.’s of phases of structure factors
when using a nonuniform density of the atomic position
vectors. This method is called symbolic asymptotic develop-
ment (SAD).

Another way to obtain statistical formulas for phase
invariants is obtained by using linearized invariants. This
method is based on previous work (Brosius, 1989b).

All formulas that we shall derive differ from the well known
triplet and quartet formulas (see e.g. Cochran, 1955; Klug,
1958; Hauptman, 1976; Giacovazzo, 1976) obtained with a
uniform density of the atomic position vectors.

In both cases we consider the space group P1 and a struc-
ture consisting of N equal (this restriction is not necessary for
our derivation and is only for convenience) atoms with posi-
tion vectors ry, .. ., ry. The strucure factors are then given by

N
E, = (1/N'*) Y exp(2mih - 1). 1)

j=1
We also consider N random vector positions X, ..., Xy with a
general j.p.d. f(x,, ..., Xy) where every x; is a random vector
modeling the position vector r;. In this paper we use a j.p.d.

f(xq,...,xy) that is also even,

Xy oo Xy) = F(=X4, ...y —Xp), ?2)
and translation invariant, f(x;+a,....,xy+a)=
f(xq, ..., xy). Finally, we consider the random variables (r.v.’s)

N
E, = E\(x,,....xy) = (1/N"*) Y expQnih-x). (3)
=1

We shall always use (to avoid possible confusion) a circumflex
(") to denote an r.v. depending on the x,. We shall also use the
traditional notation R, to denote the absolute value of the
structure factor E,, and IA?h is defined in the same way as
the absolute value of Eh. Similarly ¢, shall denote the phase of
E, and ¢, shall denote the random phase variable of Eh. For
every r.v. Z(xl, ..., Xxy) of the x; we define the average with
respect to the j.p.d. f(xy, ..., Xy) by

(Z(xy, ... xp ) = [dx; . odxy f(Xg, . X Z(Xg, -, Xy)

4)
or simply (Z(xl, ..., Xy)) if there is no risk of confusion. We
also use the same symbol f to denote all marginal j.p.d.’s of the
x;. For instance, we write

fx,x,) = fdx3 v dxy f(Xgy e Xy)- 5)
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2. The SAD method

We shall illustrate the SAD method for the calculation of the
j.p-d. of the triplet phase invariant given its first neighborhood.

Define ¢ =¢, + ¢y — @pp- We suppose now that
h(xq,...,Xy) is the j.p.d. of the x; given the values
X; — X; = I; — I;, that is the whole structure is known apart

from a translation. Then 4 is even and translation invariant.
Let P,(@y, @x» Gpx) be the j.p.d. of @y, @y, @y With respect to
this density A(x,,...,Xy). Since A(x,...,Xy) is even and
translation invariant, P,(@,, @y, @ni) is necessarily of the
form

Py(Pns Pic: Prnd) = 308 — ) +38(0 + ), (6)
where ¢ = ¢, + ¢, — ¢, and § is a delta function (actually a

periodic delta function). Since § is here a periodic delta
function we can write

8@ — @) +18(p+ @) =1+ 2a,cos(np) + Y 2b, sin(ng).

n#0 n#0
™)
Then b, = 0 since P, (¢, @, Ppix) is €ven in ¢ and
a, = [ Py(@n: G- Pryi) c08(n@) dg = (cos(ng)), = cos(ng),
®)

where ¢ = @, + @ — Ppx. We now look for a simple algebraic
relation  between Eh, Ek, Eh wx and (cos@),. Since
(R,R Rthk cos(@Py + Pk — Poa))n = RuRy Ry cos ¢ and since
(RZ)1 2 = R, etc., we can write

Py(@n: P Pra)

=142 Z cos(ng) cos(ng)
n#0

~ 14 2cos @cos ¢ (to first order)

~ 1+ 2cos @{cos ),

R Ry Ry (RyR Rh+k cos(@y + @y
(R2), (R, (R ),

~142 B ¢h+k))h

COS Q.
©)

This equation reduces to the Cochran formula when
we take A(xj, .. xN) =1, since then (R%),=1,...,
(RyRy Ry, cos(@, + P — Pudhy = 1/N'?, and  we then
obtain [after inserting these formulas back into equation (9)]

_o_ R, R R
P (@4, O1s Prn) =1 +2$

R, R, R
o exp (2% cos @). (10)

cos ¢

Let us now replace & in equation (9) by an arbitrary j.p.d.
f=f(x,...,xy) that is even and translation invariant. Then
equation (9) becomes (to first order)

Py(Pn: P Prs)

R R Ry (R, R R, .\ cos(@y + @ — ¢ _
~ 1ok htk hAlz( htkz E‘fh Px (ph+k))fcos(p
(R (Ri) r (Riv i)
Ry Ry Ry 1 (Ry Ry Ry, cOS(@y + @y — @h+k))f -
x exp| 2 T A cosg ).
(Ry) (Ric)p (Risi)

(11)

We would now like to have a consistent method for calculating
formula (11). If we have such a method, then we could also
calculate conditional probabilities of phases given e.g. the
second neighborhood of Eh,Ek,Ell L Before we continue,
note that equation (11) resembles the Von Mises distribution
introduced by Heinerman et al. (1977) to calculate the triplet
phase distribution given additional chemical information.

We shall now consider the three structure factors
Ey, Ey, Eniy Let us calculate the jp.d. Py(@y, @i @nis)
of @ Gx. Ppix With respect to an arbitrary even and
translation-invariant j.p.d. f = f(x;, ..., Xy). Then the j.p.d.
P[(Rh’ Kk Rh+k7 @ Pucs Puac) Of Eh» E,, Eh+k is given by the
formula

Pf(Rh’ Rk’ Rhﬂp @n> Prcs ¢h+k)

R R.R
=gt / do, .. / Pndpy - .. expl—ip,R,
@2n)°

. -]¢f(:0|w cee h+k)’ (12)

where the characteristic function ¢;(py,, - - - ,

x cos(@y — Oy) —

By is defined by

¢f(:0h» o Ongd)
= [f(x,..., —6,)+...]dx,...dx,.

(13)

Xy) explipy Ry, cos(@y,

We shall also write

(g - - - —6)+ ...

= O]y (14)

In order to calculate equation (14), we first remark that we
cannot calculate expressions of the form (J, (onRy)
x cos[k(@y — O] X ... X J(Pp s Rysn) cOS(@ppr — Ohii)) 3 We
can  only calculate  polynomial  expressions like
(Pu R cos(Py — O4) X ... X Py acRy i €OS(@y g — Ohii))y-  We
then also have to group these forms in ¢;(py, - - - , Oy4y) from
lowest order first to highest order last.
To do this we write

¢f(,0h» cees

s Onin) = <eXp[iPhkh cos(@y,

+ iOh i Ri i COS(Dh

Oni) = (expli(oy/11'P)R, cos(@y — 6,) + ..
+ i(Opyxc/ Ml/z)Rh+k COS(¢h+k - 9h+k)]>j/f,
(15)

which is nothing other than equation (14) when u = 1. The
heuristic derivation leading to equation (15) will be given in
§3.

We now develop equation (15) asymptotically in w as if u
were a large number. This way we have a prescription for how
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to group the terms in equation (15) from lowest order first to
highest order last. We call this way of writing equation (15) as
a series of terms symbolic asymptotic development (SAD).
After all the calculations in equation (15) and equation (12)
are done, we simply replace u by 1. We then obtain an
equation for Py(@y, @, @n1) Which as we shall show reduces to
first order to equation (11). Indeed equation (15) becomes

¢f(ph7 s Ohpr)
"
O
:<{J< 11;2R)+2Zk'lk< " )cos[k(goll h)]}x...>/
X(Pnsenes 9h+k)
(16)
and
(X(ph, cee 9h+k)>f
_ P2 Pnix 7
= <]0<M1/2Rh) X ... X ]0< P Rh+k)>f
+2313<J1< p1';2R> .><J1<‘ZL"J;1%,,+,()
X COS(‘KA’h + ‘Z’k - ‘Z’h+k)>
f
1
x cos(6, + 6, — Oh) + 0<;) 17)
Note that (R,cos@y); =...= (RiR, cos(2@y + ,)); = 0
because  f(xy,...,Xy) is translation invariant and

(f?hf?kfeﬂk sin(@, + @ — Pnia)); = 0 because f(x;, ..., xy) is
even. Then using the formulas (149) and (150) of the
Appendix, one obtains

(X(/Oha ey 9h+k)>f
1 A o
=1——p(R);— ... —— P (RS
4M Pn{Ry ) 4 Pk (R r
4MM1 10172 PuPrPhik (RthRh+k cos(Py + @ — ¢h+k)>f
1
x cos(6y, + 6, —9h+k)+0<ﬁ>. (18)

Developing asymptotically  ¢:(py, - - -, Opi) = (X(Pp, - - -
Ona))f [and using In(1+x) =x—x*/2+x°/3—... for
x| <11, ¢¢(py, - - - » Osi) Teads
¢f(/0h7 o O

= exp(— Ph R2> )

X |:1 - thpkpthk (Ry Ry Ry cos(@y + @ — ¢h+k))f

1
x cos(6, + 6, — Oh) + O(;):| (19)
Next we define

Pr(@n: @r> Prad)

= Pf(‘f’h’ 7 ¢h+k|Rh = Ry, Rk = Ry, Rh+k = Rh+k)- (20)

Putting the form of qbf(ph, e
into equation (12) we get

Bu1i) given by equation (19)

Pr(@n: P> Prad)

2 o]
Ry Ry Ry 1k / / :
=———— 1 db,... dpy, . ..exp[—ip, R
(27_[)6 h Pn APy pl—ionRy
0 0

x cos(@, — 6) — .. Jexp(—4pi (i), —..)

i Aa A N N N
X |:1 - m P i PLui Ry Ry Ry g c08(@y + O — Gya)) r

x cos(6y, + 6 — O + 0<%>:| (21)

We first perform the 6 integrations in equation (21) by using
formula (136). We then obtain

Pr(@n: P> Priad)

n)’R,R.R i .
= W Pndpy ... GXp(—j—;pﬂRi)f —..)
0

X |:J0(:0th) oo Jo(PnyxRuix)

1
+ 411—1/2 Pud1(PnR) o1 1 (Pn Ro) Prie 1 (Onic Rii)
X <khkkkh+k cos(Py + P — P f

X cos(@ + P — Phai) + 0(;)} (22)

Applying the transformations p, = 0,/ (Rﬁ)}/ * we obtain

dpy - - .exp(—iop —...)

o0
- - - R, R\ R 0
Pf((phv P Prix) = M/ .

@)’ J (R,

R R
x Jo(PhA—h> = 'J0<ph+k#>
[ (R3)}? (R
1 Pn Ry,
Aij T AL 17
Faun Ry (p &)

Pntx < Ry ik
X = S\ Poik—=
(R (R

X (khkkkwk cos(@y, + @ — ¢h+k)>f cos(@p + Gk — Phx)

+ 0(%” (23)

Then applying formula (137) of the Appendix we get
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Pi(n: P> Puiad)

_ 2RRRyu
Q2m)* (RY) (R 1 RE )
R? R?
X exp (— Azh = A2h+k )
(Ryy)y (R
2 R, R, R
X |:1+T/2 ~ h,\zk htl;
Ry (R ) (R ¢
X Ry Ry Ry, 1 cos(@ + @ — (Z)h+k)>f
_ _ _ 1
x cos(@y, + @, — (ph+k) + 0(;)i| (24)

This becomes (again using SAD)

PGy Pucr Prad)
o e p|: 2 Ry Ry Ry,
V2R (R (R )

X (khkkkmk cos(@y, + P — ¢h+k)>f cos ¢:|

ol

where ¢ = @, + ¢
we finally obtain

— Qpyi- Putting u =1 into equation (25)

Py(@n: O Priid)
R, R, R
X exp [2 =~ hAzk hf‘;
(Rh>f<Rk)f(Rh+k)f

X (RyRy Ry, cOS(@y, + @ — ¢h+k))f cos ¢i| (26)

for an even and translation-invariant j.p.d. f = f(x;, ..., Xy)-

3. A heuristic derivation of the SAD method

For simplicity we shall describe the method for the case of real
r.v.’s only.

What follows is a generalization of the approach given in
Brosius (1989a). Suppose we have s r.v.s X(xl, S W)
(1 <j <s) and that every X(xl, ..., Xy) can be written as a

sum
X; = (/N 3 Zi(xy). @7
Let f(x,, ..., Xy) be the j.p.d. of the r.v. x, ..., Xy.

Let p be a divisor of N (this assumption is not necessary for
the following, but it makes the reasoning simpler). Define

~ LN
X =/ LY, (29)
where
Y= D 0/N) P2 i)- (30)

We define a joint density f for the IA/]-,k (1 <k < ) as follows:

_ i
FXp, oo xy) = kljlfk(x(k—l)rH»l? e X)) (31)

where fi(X_1),115 - - - » Xg,) 1S the marginal density of the j-pd.
f(x,...,xy) for the rv’s x;_ Dt - - Xg,. Now all Y},
(1 < k < ) are independent r.v.’s with respect to the density
f(x,,...,xy). To keep things simple, suppose also that all Z
are identlcal and that all f, are equal [that is, f(x;, ..., Xy) is
symmetric in the x;]. Then all f’jyk (1 <k<p)are indepen-
dent and identical r.v’s with respect to the density
]_”A(xl, ...,Xy). Let P(X,,...,X,) be the jpd. of the

Xi(x;,...,xy) (1<j<s) with respect to the jp.d.
f(xq, ..., xy), that is
P(Xy,.... X)) = (1/27) [du, ... du,exp(—it;X)P(uy, . .., u,),
(32)
where (]S(ul, ...,u,) is the characteristic function of the
X]-(Xl, ce X)),
Sy, ... u)= (exp(iuji’j))jz = [f(x), ..., Xy) exp(zu] )

(33)

From the definitions given above it follows that the char-
acteristic function ¢(u,, . .., u,) = (exp(iu;X)); can be written
as

ug; )", (34)

(ﬁ(ul""’us):(b](ulﬂ'-w

where

¢1(u1’ o us; I‘L) = (eXp[(l/l’L )luj ]1]> (35)

is the characteristic function of the }A’j.l(xl, ...,x,). For all
(high) u we always get the same prescription for grouping the

respective. moments. Now let p — 1. Then f —f,
u]Y]1 — uX and thus ¢ — ¢ for u — 1, i.e.
Ay, ..., uy) = (exp[(l/ul/z)iuj)?j]);‘ foru — 1. (36)

n = N/u. We then partition the set of the x;, ..., Xy into u We conjecture that this formula will give the j.p.d. of the
subgroups: phases to first order (low exponents of 1/u!/?).
{x;,...,xy} T .
)3 4. The statistical interpretation of the B3 ; formula
= XX Kb (Xt - Xn ) (28) using SAD
Every )A(j(xl, ..., Xy) can then be written as Let us first recall the B; , formula (Karle & Hauptman, 1957):
574 . Brosius - Triplet and quartet invariant in P1 Acta Cryst. (2008). A64, 571-586
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(Ph+k)

- N1/2 <Ry =D+ Ry — ) + (R — 1) + 1]

(N —1)(N —2) R—1\ (R —1
S22 () ()

()]

where M is the number of available structure factors. We
define the Bj; formula by

RthRh+k cos(gy, + ¢ —

(37)

_‘Ph+k)
Nm[(Rz D+ Ry — D+ (Ry = 1) +1]

(N—1)(N-2) Ry—1 o — 1
20 ()

et -

Z (];71) cos(2mq - u). (39)

Ry Ry Ry, cos(py, + ¢y

Let
O() =

QO(u) is the origin-removed Patterson function: it is 0 unless u
equals some r; — r;. We can use the information stored in Q(u)
by requiring that the random vector variables x;, x; range
uniformly over the unit cell subject to the condition that
x; — X; equals some r, — rgz (Where a, B are different). This can
be done easily by defining the j.p.d. f(x,, ..., xy) of the r.v.

X;, ..., Xy @S
N-1 N
f&xq,...,xy) =Cte [] [] O(x; — (40)
i=1 j=
jt</
where Cte is a constant defined by the condition
Jf(x,....,xy)dx,...dxy =1.  Clearly  the  above
f(x,...,xy) is a good joint density: f(xy, ..., xy) = 0 every-

where except when for all i,j x;, —x; =r, —rz for some
(different) «, B, and it is translation invariant and even.
Putting it differently, f(x,, ..., Xy) is the uniform (in the case
of no overlap of interatomic vectors x,, — Xz) density where the
x; — X; range only over the interatomic position vectors. Let us
now 1nvest1gate the different joint distributions f(x;, x;),
f(x;, X;, x), f(x;, X X;, X;, X,,) etc. By definition,

f(x;, x;) fl_[dx FXys e, Xp), (41)
pars

f(x;, ,,Xz)—fl—[dx fxps oo xy). (42)
M#
m#l

To calculate these joint densities is a formidable task (for a
computer). However, one does not need to calculate e.g.

f]_[m#m#j dx,, f(x;, ..., xy). Indeed f(x;, x;) is zero every-

where except when x; — x; = r, — ry (for some different «, f).
Since Q(x; —x;) is also zero everywhere except when

X; — X; =1, — 1y (for some «, f), it is quite plausible to put

[ x) = COx; — X)), (43)

where C, is determined by the condition [ dx; dx; f(x;, x;) = 1,
thus C; = 1.

Let us find f(x;,x;,x,). We want x;, x; and x;, to range
uniformly over the unit cell subject to the constraints

X, —X; =1, —I,

X, —X, =1, —I,

iy XX =TI X

(44)

for some r; ,x, v, v, v, 1, (Where iy # by, iy # iy, is # ig).
But O(x; — x,)O(x; — x,)O(x; — x;) is also zero except when
X, =X, =I; —I,X,—X, =, —1I, . So it is

quite plau51ble to put

X —X; =X, — I

f(x;, x X;, x) = G0(x; — Xj)Q(X]’ —x)0(x; — X,). (45)

The constant of proportionality C, is determined by the
condition [ dx; dx; dx, f(x;, x;, x;) = 1, thus

i ]7

R2—1\°
c21:Z<A;1_1> . (46)

q

We also get the moment

/dx,- dx; dx, f(x;, X;, x;) cos[2th - (x; — x;) + 27k - (x; — x;)]
[ ® = DR = D) Repns — D (R: —1)°
B [;(N—l) &—1) 2N—1) }/Z e

(47)

If there is no overlap of interatomic vectors f(x;, X;, X;) [see
equation (45)] is zero except when there exist vectors
Ty g T, (o, B,y different) such that x;— X; =1, — Iy,
X, — X, =I5 —T,X . It then follows that [since
f(x;,x;, x;) only has peaks at x; — x; =r, — 1y etc.]

—X;=I,—I,

/dx dx; dx, f(x;, x;, x;) cos[27h - (x; — x;) + 27k - (x; — x))]

1

= NN DN =2 Z cos[2rh - (r;

(UD]

— 1)+ 27k - (r; — 1)),
(48)

where ) ) =D i iz (and when there is no overlap of
interatomic vectors). We can go on in this way to determine
j.p.d.’s of a higher (more than 3) number of r.vs x,. Since we
are only interested in calculating Py(¢y, @k, @Ppiy) to order
1/u'/? [see equation (25)] in this paragraph we shall not
discuss it here.

Next let us calculate equation (26) for our j.p.d.
f(xy, ..., xy). First calculate (IA?,z,)f:

Acta Cryst. (2008). A64, 571-586
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(f(lzl)f = < Zexp [27tih - (x; — xk)]>
(lk)
=1+ N Z(cos[2nh ~(x; = x )],
(k)
N(N—-1) (R} -1
L N (R
N N-1
=R;. (49)
Finally
(Rhﬁkﬁh+k cos(@y + P — Pria))

1 A A A
= WR6<EhEkE—(h+k)>

1
= Wz;(cos[Znh (% —x) + 27k - (x; — x))])

NN”Z { Z 1+ Z cos[27th - (x; — x;)])

i A=
+ ) (cos2m(h + k) - (x; — x))])
i=j#l
+ Z(cos[an S(x; —x)])
i=I#]

+ Z(cos[2nh (%, —x)) + 27k - (x; — x,)])}
(i)

1 -1
= S Ay (R = D+ (R = 1)+ (8 = 1)
) (50)

where Re z is the real part of z, ) ;) means ) ..., and
where

(R~ 1) (Ray — 1)
“('""):[Z -1

q+h+k

-1 (R2— )
(N—l) }/Z o

Inserting these formulas into equation (26) we get

Py(@) o expl2im(h W/ RuRy Ryl eos @), (52)
where
N—-1)(N -2
mlh )= (B + R Ry —2) + =) g
(53)

and where ¢ = @, + @, — Py i
Developing [(N — 1)(N — 2)/N'?|ju(h, k) asymptotically
12

according to inverse powers of 1/N"/~ we get
(N=1)(N -2
Tﬂ(h’ k)

[(Rz 1)(Rh+k - 1) + (Rlzl - 1)(R12( - 1)
! ) (54)

Nl N1/2

+8 = DB~ 11+ 0

that is
m(h, k) ~ N1 —— [Ry+ Ry + Ri — 2+ (R, — (R, — 1)
+ Ry = DRy — 1) + (R — D(Rpy — 1]
1
. &

5. The linearized invariants method

We shall now show by another method that the form (a Von
Mises-like distribution) of equation (52) is acceptable. To this
end we write

( /1\71/2)(R2 + Ry + Ry — 2)
+ N2 3" exp{2nilh - (x; — x,) + k - x; —x)]}
i
il
= (/N R+ R+ R, —2)
+ N7 3 (8,0, K) + S;(k, h) + Sj(h, —h — k)

i<j<l
+S;(—h — k. h) + Sk, —h — k) + S;;(—h — k, )],
(56)

where

S;i(h, k) = exp{2nifh - (x; — x)) + k- (x; — x,)]}. (57)

We shall now ‘linearize’ EhEkE,h,k; that is we define an r.v.

Z(h, k) = (1/N")(Ry + R + Ry — 2)
+ N723[S,(h, k) + S, (k, h) + S, (h, —h — k)

o

+S,(—h — Kk, h) + S,(k, —h — k) + S,(—h — k, h)],
(58)

where
S,(h, k) = exp[27i(h - u, +k - v,)] (59)

and where u, and v, are independent random vectors ranging
over the unit cell and o = (ijl) with i < j < I. There are exactly
N(N —1)(N —2)/6 such o’s. It follows from equations (56)
and (57) that every value of E E E _n_k 18 also attained by
Z(h, k). We shall now impose the condition that every couple
(ug, v,) is of the form (r; —r;, r; —r;). We do this by using a
density

f(ug, v,) = Cte Q(u,)Q(u, — v,)Q(V,), (60)

where Q(u) is given by equation (39). The first neighborhood
of the r.v. Z(h, k) is {Z(h, k)}. We shall consider the second
neighborhood {Z(h k), UV, W}, where U= Z(h 0),
V= Z(0 k) and W= Z(h + k, 0), and remark that these r.v.’s
are real.
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We now calculate the ]pd P(w |1Z|,U,V, W) of the r.v.

V.12 [Z =12l exp)], U, ..., W.

Py, |Z],.... W)

=[1Z|/(27)’] fd@fzdz f du f dv f dw exp[—iz|Z|

—00 —00 —00

x cos(Y — 0) — iulU — ivV — iwW]

x @(z, 0, u, v, w)* exp[izN~V? cos O(R2 + RZ + R —

x expliu[N'/* +2N"V* (R} — 1)]
+ w[NY? £ 2N7V2(RE —1)]
+iw[N"? + 2N (R, — DI,

where K = N(N — 1)(N — 2)/6 and where

o(z,0,u,v,w)
= (exp [izN’W(cos[Zn(h ‘u, +k-v,)— 6]
+cos2n(k -u, +h-v,) — 6]
+ cos{2xfh -u, — (h+k)-v,] — 6}
+ cos{2x[—(h+Kk)-u, +h-v,] — 6}
+ cos{2n[k -u, — (h+ k) - v,] — 6}
+cos{2x[(-h —k) -u, +h-v,] — 9})]
X exp (ZiuN —/2{cos(2mh - u,) + cos(27h - v,)
+ cos[2w(h-u, —h- va)]})
X exp (2ivN’3/2{cos(27tk -u,) + cos(2nk - v,)
+ cos2(k -u, — k- va)]})
X exp [2in_3/2( cos[2z(h + k) - u,]
+ cos2z(h + k) - v, ]
+ cos{2n[(h + k) - u, — (h + k) - v,]})])-

Next define

M(hv k) = <COS[27T(]1 ™ +k- Vot)])

= /dua dv, f(u,, v,)cos2m(h-u, +k-v,)]
RI—1\ (R, —1
-[Z6=) G
%%“)VZ@”)

u(h) = (cos(2rh - u,)) = (cos(2rh - v,)) = w(h, 0)

%2@1MW“)VZW”

Remark that theoretically [see equations (50) or (38)]

)

2)]

(61)

(62)

(63)

1 1
p(h, k) = NN2 iz BuRiRuqi cos(@n + @ — Ppn) — O(ﬁ)
- NN1/2
N]/Z 2 N]/Z 1 5
1 1
=—R-1D+0(=)=0[=). 64
N( i-0+0(3) =0(3) (64)

We assume that in practice equation (64) is also true. We now
calculate ¢(z,6,u,v,w) up to and including terms of order
O(1/KKY*) = O(1/N*N'?). But first we need some addi-
tional definitions:

Z,=58,0h,k) + S,k h)+ S, (h, —h —k) + S, (—h — k, h)
+S,(k, —h — k) + S,(—h — k, h),

I}a = cos(27h - u,) + cos(2r7h - v,) + cos[2(h - u, —h-v,)],
f/a = cos(27k - u,) + cos(2nk - v,) + cos[2n(k - u, —k - v )],
Wa = cos[2mw(h + k) - u,] + cos[27(h + k) - v,]

+ cos{2n[(h + k) -u, — (h+ k) - v,]}. (65)
We then get

o(z,0,u,v,w) =14 izN>?6.(h, k) cos 0 + 2iuN"/*311(h)
+ 2ivN 23 (k) 4 2iwN>?3u(h + k)
— 12N+ O(1/N)] — M4’ N3 + O(1/N)]
—4v*N7B + O(1/N)] — 4w*N7’[3 + O(1/N)]
— (1/N)22u(Z,0,) — (1/N*2zv(Z,V,)
— (1/N*2zw(Z,W,) — (i/3)3!z22u2v(1/N*N")6
— (6/N*N"Y»)izuw — (6i/N*N'*)zvw
+ h.o., (66)

where h.o. means terms of order 1/N* that do not contribute
to the phase determination. Notice that e.g. (Za ﬁa) is of order
1/N as it contains terms of the form p(k) and thus the terms in
equation (66) of the form —(2/N3)zu(2a0a) are actually of
order 1/N*.

Then

Ing(z, 0, uv,w)
= 6izN>"?ju(h, k) cos 0 + 6iuN""?ju(h) + 6ivN > ju(k)
+ 6iwN " p(h + k) — SN — 9’ N> — 9N ~3
— N — 2/N)zu(Z,U,) — 2/N*)zv(Z,V,)
— (Z/NS)ZW(ZQVAVO() — (6i/N*N'*)zuy
— (6i/N*N"*)zuw — (6i/N*N'*)zvw + h.o. (67)

It then follows from equation (67) [and recall that
K =N(N —1)(N—2)/6]
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o(z,0,u,v, w)K
=exp I:(N_;\?# izu(h, k) cos 6
W=D,
W= D= i + N =20 419
CWN-DWN=2),, (N=DN-2),,
N % N

CWN-DN=2),, (N-DWN-D),
N2 2 Nz 2

- %Zu<2¢1f]¢1> - %ZV< Aot Ar;v) - %ZW<Z(1W:1)
i i
—quVCOSG —quwcose
— Wsz cos O + h.o.]
(N—1)(N—-2).
=exp [Nl/z izp(h, k) cos 0 + NNY2iup(h)

+ NN“Zim(k) + NNY2iwu(h + k)
1 2 1,2 1,,,2

4Z 2V —zw
—la(Z,0,) — 2 Z,V,) — Yew(Z,W,)
— quvcos@ — quwcosé
_msz cos6 + h.o.], (68)

where here h.o. denotes terms of order 1/N or higher that do
not contribute to the phase determination. Substituting
equation (68) into equation (61) yields

Py, 1Z],.... W)

O(fdé‘fzdz f du f dv f dw exp{—iz[|Z| cos ¥

— m(h, k)] cos 0 — iz| Z| sin {rsin 6 —
— [V — m(k)] — iw[W — m(h + k)]

L2 1.2 1.2
z—u 2V — w7}

iu[U — m(h)]

X <1 —Lu(2,0,) — 12v(Z,V,) — Law(Z,W,)

(N-DWN -2

m(h) = N'* + 2 (Ry = 1) + 77— ()

Nl/z
[see equat10n (63)]

~ N2 4 (R: — 1) + NN'?pu(h). (70)

NI/Z

Next we calculate the
P(Y||1Z] = RyR Ry 4,
N'?R},,) and we define

conditional j.p.d.
U=N'"?R}, V=N'"’R,

P(y) =
W =

8y = N'2[R; — 1 — Nu(h) — 2/N)(R; — D],
8 =N"R —1- NM(k) — @/N)(R = 1],
Sk = N [Rap — 1 — Nu(h + k) — (2/N)(Riyi — D),
a = Ry Ry Ry, cos 1// — m(h, k),
b = R Ry Ry, sSIn Y,
tana = b/a,

0 = (a* + b))~ (71)

Because of equation (64) &, 8, and §,,, are of order 1/N'/%.
Then

P(lﬁ)ocfdé‘fzdz f du f dv f dw exp[—izQ cos(f — )]

x exp(—iudy) exp(—ivd,) exp(—iwdy )

x exp(—iz> — lu* — v —lw?)

x [1 —Llau(Z,U,) — 2v(Z,V,) —Law(Z,W,)

— (i/NNY*)zuv cos 0 — (i/ NN"?)zuw cos 0

— (i/NN"*)zvw cos 6 + h.o.]. (72)

Then doing the u, v, w integrations using formulas (151) and
(152) we get

2
P(Y) o f d9f zdz exp[—izQ cos(d — )] exp(—1iz?)
- %‘Si - %6121+k)

x [1+ Liz cos 08, (Z,U,) + 8, (Zy V) + 8yl Z,W,))

X exp(—i "

i i .
~ NN zuv cos 6 — NN zuw cos 6 + (1/NN"%)iz(8,8, + 840htk + SiBhp) cos 8 +h.o.].
l (73)
— NN zvwcos 0 + h.o.), (69)
Doing now the 6, z integrations in equation (73) we get
where m(h, k) and m(h) are given by
L P(w)ocexp(—Qz){HQcosa[%(sh (Z,U,) + 82V,
m(h7 k) N1/2 (R + R + Rh+k 2)
N—-1)(N-2 Z W —
( N) 1(/2 2 w(h, k) [see equation (63)] o ZaWa)) + NN!/2 (O dudsac + 8k8h+k)}
1
Nl/z —5 (R + R+ Ry —2) + NN pu(h, ) * 0<N2 ) }
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x exp{ — Q0+ Qcosa[%(a.,m U,) + 8(Z,V,)

+ Sk Zo W) + s

o))

1
o exp |:2RthRh+kA(h, k) cos ¥ + O(ﬁ)}, (74)

NN/2 (80 + Ondnik + 5k5h+k)]

where

A(h, k) = m(h, K) + 28,(Z,U,) + 8(Z, Vo) + Sps(ZaW,)

+ (1/NN"?)(8,8 + 84Sk + Sidnrne)- (75)
It is now interesting to calculate P(y) when we choose
f(u,,v,) =1 [see equation (60)] instead. Then w(h,k) =0

and p(h) = 0. It then follows from equations (70), (71) and
(65) that

m(h, k) = (1/N'?)(R; + Ry + Ry, — 2),
m(h) = N'? + (2/N'*)(R}, — 1),
8y = N'’[R; —1— (2/N)(R; — D],

= N"Y2(R: — 1)+ O(1/N"?),
(z,0) =(Z,V,) = (Z,W,) =0. (76)

Then A(h, k) in equation (75) becomes

A(h, k) = (1/N"))[R; + Ri + Ry
+ Ry = DRy — 1) + (R —

—24+(Rj —1)(R: —1)
DR — D1 (77)

This is exactly the result for the approximate value of m(h, k)
given in equation (55).

6. The quartet in P1 using SAD

We consider the seven r.v’s E = Eh, E = Ek, E = El,
E = Eh+k+,, E5 Ehﬂ, E6 Eh+l and E = EH,, we like-
wise define ¢, @,, ..., (p7 We are interested in the calculation
of the j.p.d.

P(Ru 1_32, R3, R47 1_35, 1_36, Rw @1 P2y O3, Pys s Por P7)

R,...R, [ ° =
E¥/ d91~~-/ prdp; ...exp[—ip R,
0 0

@m)"
x cos(@p, — 6,) —...1o(pys - - -, 05), (78)
where
$D1s s 0) = X(pys o, O) (79)
and
x(01s - .., 05) = (exp[(1/1")ip, R, cos(@, — 6,) + . ..

+ (1/1"")ip, Ry cos(@; — 6,)]) (80)

.) means (...), with respect to an arbitrary
translation-invariant ~ j.p.d.  f(xy, ..., Xy).
(expl[(1/1'2)ip, R, cos(@; — 6;) + ...

and where (..
even and
Then developing

+ (1/)ips Ry cos(@; — 6)])
powers of 1/u'/? we can write

asymptotically according to

x(ors ..y 07)

<’°( )
4.4 7 Py 2

v <,1(WR)...J1(WR4)

x cos(@; + ¢, + @3 — ‘2’4)> cos(6; + 6, + 6; — 6,)
3.31 P13 P2 3 Ps 2

+ 270 4<‘Il (WR1>]1 (WR2>]1 <’ul/2R5>

x cos(@y + @, — ‘2’5)> cos(0; + 60, —05) + ...

331 7 7 7
+2 Z<]1 (M1/2R >J1 <M1/2R4>]1 <M1/2R )

X cos(@; — @, + @7)> cos(0, — 6, +6,)
o 1 81
Then

x(oy, -, 0)
={(1 —Lpzf%2 +— ! PR 4. ) x
4/»1« 1431 43ﬂ2 1
«(1-L 2Ry IR+
m ,07 7 yEm 2:07

333 P12 Py A Ps
(k) () 8

x cos(@ + ¢, — ¢5)> cos(f; + 6, —65) + ...

331 Py A
<20 (i) Gt ) (i)

X cOS ((,51 — @+ <p7>> cos(6; — 0, +6,)

4.41 P15 Ps 3
+2l8< ZMI/ZR]) X ... X (WR4>

+0(u™"?). (82)

It then follows that

Acta Cryst. (2008). A64, 571-586

579

J. Brosius « Triplet and quartet invariant in P1



research papers

x(o1s .5 07)

1 A 1 A
=1 —4—,0%<R%> cee T 4—/0%<R%>

4MM1/2 010205 (R R R cos(@; + @, — @5))

x cos(f; +6, —05)+ ...

l AA A N ~ N
T du P10407(R RyR; cos(¢; — ¢, + ¢;))
x cos(0; — 6, + 6,)

1 AaA N A N N
+ 87,112'01'02'03'04 (RiR,R3R, cos(¢; + ¢, + 03 — ¢y))
x cos(0; + 6, + 6, —6,)

1 1
+ 167 2,01 2<R2R2>+ -+ 160 2106 7<R2R2>

1 _
+ HRY) + . +Wp$<R$>+0(u > (83)

e 3 2P

Developing asymptotically x(pl, ..., 6;) according to powers
of 1/u'? using In(1 4 x) = x — x? + 4+ ..., we can write
In x(py, ..., 6;)
1 N
= = AR
i A~
172 P1P2Ps (R Rst cos(¢; + ¢, — ¢s))
4,u, dpup2
x cos(0; + 6, —65) + ...

1 A
= PR
i

l B - o A A A
e P1P407(R RyR; cos(¢; — ¢4 + ¢7))
x cos(0; — 6, + 6,)

1 AA A A n n n N
+ 8—M2/01,02/03,04<R1R2R3R4 cos(¢; + ¢, + 3 — ¢y))
x cos(6; + 6, + 65 — 6,)

+ 1642 P o3({ R2R2 (fib(fé)) + ...

+ 164 2 'O6'07( R2R2 (R@(i&))

e PHURY) — 2(R)) + ...+ or PR — 2(R2))
+O(u™P) .

Developing now exp[uIn x(py, ..., 6;)] asymptotically in u

using exp(x) =1 +x +3x? + ..., we get
expluln x(py, - .., 6,)]
= exp(—301(R}) — ... — 1p3(R))

X |:1 - mmpzps (Rﬂ%zi?s cos(¢; + @, — ¢5))
m
x cos(0; +6, —65)+ ...
i AA A o ~ ~
— 175 P10 (R RyR; cos(@y — @, + ¢7))
4t/

x cos(0, — 0, + 6,)

+ @P] 020304 (R RyR; R, cos(@; + @, + @3 — @)

x cos(0; + 6, + 6, —06,)

1 Aa A N N
- ﬁpl p2p3p4,0§ (R RyRs cos(¢; + ¢, — ¢s))
X <k3k4k5 cos(¢;
x cos(0; + 6, + 6,

— @4+ ¢s5))
)+ ...

1 Aaa A A N
- ﬁpl p2p3p4,0% (RyR3R; cos(¢, + @3 — ¢7))

x (R,R,R, cos(p, — ¢, + ¢,)) cos(6, + 6, + 6, — 6,)

1 1 ~ ~
+—p.(<R4>—2R2 )+t p7(<Ré>—2<R$>2)

1 A A A A
- 37 ;01 Pzps <R1R2R5 cos(¢; + @, — ‘/’5)>2

X cos* () + 6, —65) + . ..

- ﬁ 102030505 (lezks cos(@; + @, — @5))
X <k1ﬁ3k6 cos(@; + @3 — @5)) cos(6; + 6, — 05)
X cos(f, + 0y — 05) + ...+ 0(u3/2)]. (85)
Then equation (78) becomes
PR, ..., %)
5 B oo 2
= %K prdp; .. A dé, ...exp[—ip,R,

x cos(0; — @) — ... J¢(py, ..., 67)

00 27T
o<R1...R7/ 01 d,ol.../ dé, ...exp[—ip, R,
0 0

x cos(6, Jexp(—Lot(R})) x

—@)— ..
x exp(— p7 (R%))
X |:1 — 4—1/2,01,02,05 (R,R,R; cos(¢, + ¢, — 5))
n
x cos(f; + 6, = 65) + ...
i R R R oy ~ A~

_ mmpzxﬁ% (RR,R; cos(¢; — @, + 7))
x cos(6; — 0, + 6,)

1 R.R.R.K 2 ~ A N
+ 2 P19203 04 (R Ry Ry Ry cos(y + @, + @3 — )

8u
x cos(0; + 6, + 05 — 6,)

1 ol fal ta A A A
- ﬁplpzpsl)Wg(RleRs cos(¢; + ¢, — ¢s))
X <k3ﬁ4k5 cos(@;
x cos(0; + 0, + 6,

— @4+ @5))
—0)+...
- ﬁmpzps/%ﬂ%(kzkﬂ% cos(@, + @3 — @7))

x (R,R,R, cos(¢; — @, + ¢,)) cos(6, + 6, + 65 — 6,)

1 Ay A
+— P B(RIR) — (R)(RS) + ..

16p
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1 - - 1
+ g PURD —2(R)) + .+ 55 (R = 2(R5))

o2 ofei)] .

where O’(1/u) does not contain constants and only contains
phases of order 1/u that do not contain cos(9; + 6, + 6; — 6,).

Applying the transformation p, — p,/(R%)"/? and doing the
6, integrations in equation (86), equation (86) becomes

P(R,,...,9,)
_ _ [o¢]
0<R1-~~R7/ prdp; ... exp(—30] — ... —p7)
0
J, R J R
LRy ) T\ gy
. ~3
(=) PLP2Ps

4”(’]/2 <R%>1/2<R%>1/2<1}§)1/2
X (R R,Rs5 cos(, + @, — ¢5))
<3 (o (g ()
1\ P17 = 1\ P2= i\ o5 —=
(R3)'V? (R3)'? (RY)"?
oot
X Jo\ P3 7% o\ Pa—=%
Ry O\ Ry
R, R, o
x Jy (106 (Ré)l/z)Jo (:07 (IAQ%)W) cos(¢; + ¢, —¢s) + ...
) P10203 P4
Bl (R (R RS) 2 (RY) 2

X <k1k2k3k4 cos(@y + @, + @5 — @)

X cos(¢; + @, + @3 — ¢,)
R
<R4>1/2

X J; (,0 Rl ) X
1
<R1>1/2
R R R
XJo(Ps — )Jo</06 2 >10<P7A—7>
(R§>1/2 (R%)l/Z <R%)1/2

= P10203P413
2 (R RS RY (R (R
X (lezks COS(¢1 + @2 - ‘2’5)><R3R4k5 005@3

] (;01 R11/2> X J (,04 R41/2)
(R?) (R3)
o g oo )
(R2)'? (R2)'V? (R2)'V?

o (1
xcos(@+¢,+¢;—@)+...+0 A (87)

— @4+ @5))

In equation (87) O’(1/u) denotes terms of order 1/u that do
not contribute to the quartet phase. Using formulas (137) and
(138) of the Appendix we then obtain

P(Rlv ~a¢7)
o BR
X R, ...R;exp T TR
(R) (R3)
| PRRR - )
x |1+ ————=— (R R,R; cos(¢, + ))
|: 4M1/2(R%)(R§)(R§) 1 (@1 + ¢, — @5
X cos(@; + @ —@s) + ...

%24 —<§%;€.2-Ri3<§§> (lezkskzt cos(@; + @, + @3 — @)
x cos(¢; + (Z’z +@;—¢,)
B _( hair R Ry(1— RE/(R%)

( 1) (R (RY)

X <R1R2R5 cos(@; + @, — @5)) <R3I}4R5 cos(@;
xcos(@ + @+ ¢ — @)+ ...
_2R,...R,(-RY(RY)

(R .. (RI(RY)
X <R1R4I}7 cos(9; — @y + @7)) cos(p; + @, + @3 — @)

o] -

We now define

— @4+ @5))

(R2R3I}7 COS(@ + ‘2’3 - @7»

R1R2R5<R 2R5 05(%"‘902 ®s))
myps = A etc.,
(R} (R3)(R2)
R|R2R3R4(k k R IA? COS(‘Pl + @ + @3 — @)
Myp3q = R > )
(R (R3)(R3)(R3)
R,R,R R4(1— RY(RY) ~ o - A A A
d ki (R,R,R + ¢y —39))
ST R Ry gy R et @ =gy
X (IA?J{’ IA? cos(@y — @4 + @s)) etc. (89)
Then

PR,,..., ;)

Rt _ii>
)R

2 _ _ _
S |:1 + Wmlzs cos(@; + @, — @s)

och...R7exp<—
2 _ _ _
+ W’nms cos(@; — @4 + 9s)
2 _ _ _
+ Wmms cos(@; + @5 — @)
2 _ _ _
+ W’nz% cos(@, — @4 + @)
2 _ _ _
+ W’"zw cos(@, + @5 — ¢;)
2 _ _ _
+ Wmm cos(¢; — @, + ¢;)

2 _ _ _ _
+ ;m1234 cos(@; + @, + @3 — @)
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D D D2/ /D2
%R (Rz) 4(1 (—R;:z/kg)ei)) (klkzks C05(92’1 + @2 - ‘/A’s))
X (RyR,R; cos(@y — @y + @5)) cos(@y + @, + @5 — @,)
2R ...R(1-RY/(RY)
(R .. (RY(RY)

(R\R3R; cos(¢, + @3 — @5))

X (R, R, Ry cos(@, — @y + @o)) cos(@y + @, + @5 — @,)
2R RO -RYRE) oo
- - (R,R3R; cos(¢, + 93 — ¢7))
o <R%>...<Ri><R%> B T
X (R RR, COS(‘?’l - (2’4 + ‘2’7)) 005@1 + @+ @5 — @4)
1
+0 —ﬂ (90)
N
Using 1+ x =exp[ln(1 +x)] = exp(x — x*/2 +x3/3 — .. ),

equation (90) reads

PR, ..., ;)
SR R ( RE f¥>
1o Rpexp | ———.. - =
(RY) (R3)
2 _
X exp Y 12 Mos cos(¢; + ¢, — ¢s)
2 _ _ _
+ Wmm cos(@; — @4 + ¢s)
2 _ _ _
+ Wmm cos(¢; + @5 — @)
2 _ _ _
+ szm cos(@, — @4 + @)
2 _ _ _
+ Wmm cos(¢, + @5 — ¢;)
2 _ _ _
+ W’”]M cos(¢; — @, + ¢;)
2 _ _ _ _
+ ;m1234cos((p1 + ¢+ ¢ —¢y)
- ﬁ(m125m345 + M3y + My3yMyyg)
X cos(@; + @, + @5 — @)
2 _ _ _ _
- ;(ds +dg + d;)cos(@; + @, + @3 — @)

o] o

We can stop here and put u = 1 into equation (91). But we can
also go further, since we can write for the marginal density of

0=0 +¢,+0;— ¢

P(R,,....R;, §)
R, ...R,exp(—R}/(R}) ... — R}/ (R3))
x exp{(2/1)[myp3s — (Myps5miys + MyzgMogs + Moyzmyy;)
— (ds + dg + d;)] cos ¢}

X [0[(2/:“1/2)(’"%25 + m§45 + 2mypsmsys cos @)1/2]

X [0[(2//1'1/2)(”1%36 + m%zm + 2m 36146 COS @1/2]

X L[2/ ") (miy; + mis + 2mygmys; cos @1/2]' (93)
To obtain equation (93) we used the identity

acos(0 + a) + bcos(B — 6)
= [a® + b? + 2ab cos(ax + B)]* cos(6 + y).  (94)

Using SAD and the relation j(x) > exp(+4x?) for small x in
equation (93) we obtain

P(Ry,....R;, )
R, ...R,exp(—R/(R}) ... — R}/ (R3))

x exp{(2/1)[myp54 — (Mypsmays + myzgmay,

+ myz;myyg) — (ds + dg + dy)] cos ¢}

X expl(2/ 1) (mypsmizys + MyzeMpye + Myzyimyy;) cos ¢

X R, ...R;exp(—R}/(R]) ... — R3/(R3))

x exp{(2/m)lmp34 — (ds + dg + d;)] cos ¢}. (95)
Defining P(p) = P(p|R, =R,,...,R, =R;) and putting
© =1, equation (95) becomes

P(p) ox exp{2[myp3, — (ds + dg + d;)] cos ¢}, (96)
where one must put R, = R, in [1m,;, —
equation (96).

We shall now consider a uniform j.p.d. f(x;, ...,
equation (96). Then

(ds +dy +d;)] in

xy) = 1 for

m _ Ri{R,RyR(RiRyRy COS(¢1 + (2’2 + @3 - ‘2’4))
o (R} (R3) (R3) (RS
_ RiR,R4R,
= N ,
RR,RyR,(1 — R2/(R2)) ~ ~ » P
ds = RoRR( s/ (Rs)) (R\R,R5 cos(¢, + @, — @5))

(R2) (R3)(R3) (R3) (R2)
X <R3R4R5 COS(‘2’3 - (2’4 + ‘»55»
_ RRyR;R,(1 — R%)

tc. 97
N efc (97)

and equation (96) becomes in this case

_ 2R{R,R;R _
. P(p) o exp [% (R + R: + R} —2)cos (pi|, (98)
PR,,...,R;, @) = / dos f dgy f dg, P(R,, ..., %;), (92)
which is the classical formula for the quartet in P1.
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7. A statistical interpretation of the B, , formula using
SAD

For the B, formula we refer to Karle & Hauptman (1957).
We consider the j.p.d.

N—-1 N
fxp, ... xy) = Cte [] 11 O(x; — X,) 99)
i=1 j=
]i<j
Then
fx;, x X;, X/» X,,) = C3Q(Xj - Xi)Q(Xj - x)0(x,, — X;)
x O(x; — x,,)O(x,, — Xj)Q(xl —x;). (100)
This is the most general product of Q(x; —Xx; ) containing
only the random vector variables x;, x;,Xx;,x,. The
constant C; is determined by the condition
J dx; dx; dx, dx,, f(x;, x;, X;, x,,) = 1. But then
C‘lzz R —1\ (R —1\(Ry — 1\ (Riym—1
P AN-1J\N-1J\N-1 N-1
R, . —1\(R,—1
x [ —Em m . (101)
N—-1 N-1

This is pictorially represented in Fig. 1.

If we assume that there is no overlap of interatomic vectors,
it follows that f(x;,x;,x;,x,) =0 except when there exist
different atomic vectors r,, PR 9 such that

X, —X;=TI,—Ig X —X=I3—TI, X —X,=TI,—I

X, —X; =3 — Ty, X, —X; =T; —Tpg,

- ; X, —X; =T, — I,

(102)

However, calculating moments with this density f(x;, x;, X;, X,,)
le.g. the constant =Y mlRk — /(N —1)]
x[(Rf —1)/(N = D]I(R;, — 1)/(N — DI(RE - —1/(N = 1)]

x[(R:_,, — 1)/(N — DI[(R?_,, — 1)/(N — 1]} is too laborious
(for the computer). Fortunately we can avoid such triple
summations over reciprocal space. Indeed if we take for
f(x;, x X;, X, x,,) the simpler formula

f(x;, X;, X, x,,) = C,0(x; — Xj)Q(Xj —x)0(x; — x,,)O(x,, — X)),

(103)

we shall only have one summation over reciprocal space [see
equation (106)]. Equation (103) is represented by the solid
lines in Fig. 1. If there is no overlap of interatomic vectors then
there exist again different atomic vectorsr,, Iy, T, I,y such that

X; —X; =TI, —Ig X

i i @ ;T X =TI,

X, =X, =T, —I; X, —X; =TI —I, (104)

The constant C, is much simpler than the constant C; [equa-

tion (101)],
R2—1\*
C;1=Z< " )
—\N -1

We also obtain for the moment [using equation (103)]

(105)

/dxi dx; dx; dx,, f(x;, X;, X;, X,,,)

—x,) +k-(x; —x,) +1(x, —x,)]}

-GG ()
(/205

The numerator in equation (106) is the most important part of
the B, , formula (Karle & Hauptman, 1957).

Let us apply all this to formula (96) [using equation (103)
instead of equation (100)]. We already know that

x cos{27nfh - (x;

(106)

(R}) = (R, = R}. (107)
Then e.g.
ds = 0 since (R?)

= R:and R = (108)

Let us calculate

05(‘2’1 + @ + @3 — @)

Myp3y = = =
)(R WRA(RY)
R,R,R:R R n ” ~

= % <R1R2R3R4 cos(¢; + ¢, + 03 — @)

(R} (R3)(R3)(R3)

RIRyR\R, ~ o ~ = R

=——— (RR,R;R, cos + ¢, +

(R R,R R4) 5 4 co8(@; + @, + @3 — @)
_ <R1R2R3R4 cos(@; + @, + @5 — @) (109)

R,R,R;R, '

Just as for the triplet case [equation (50)] we can write

A

<k1i{' k R, cos(¢y + @, + @3 — ¢,))
1 .
— Re E (exp{2milh - (x,

R

+1- (xr - xv)]}>f

N - X.v) +k- (xq - Xs)

1
= N(R%l +Ri +R|2 +R h+k-+1 +Rh+k +R h-+1 +Rk+l 5)
(N=1(N-2)
e )+ )+ el D)
4+ uh+k D)+ uh+1LK)+ wh k+1)]
(N-1D(N =2)(N -3)
+ N

where p(h, k) is given by equation (51) and w(h, k, 1) is given
by

(b, k, 1), (110)

T
P1

Figure 1
Pictorial representation of equation (100) (p;, P, P3, P4» Ps» P Tepresent
interatomic vectors).
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. (R2 1) (R +h 1) (R2+h+k - 1)
p D= [Z WD WD (N-D
( q+hkHl

=N I

[see equation (106))]. If we replace (RllA?2IA23IA24
xcos(@, +@ +@ —¢,)) in  equation  (110) by
R,R,R;R, cos(¢, + ¢, + @5 — ¢,) we obtain a formula that we
shall call the B, formula. Finally, we get the following
formula for the quartet:

<R1R2R3ﬁ4 cos(@; + @, + ¢s
R,R,R;R,

—-é&)>cos(¢0],
(112)

P(p) = exp [2

where (1}11}2&31}4 cos(¢, + ¢, + @3 — @4)) is given by equation
(110) and where ¢ = ¢, + @, + @; — @,.

If we develop asymptotically w(h, k, 1) according to inverse
powers of N then we get

Nu(h, k1) = (R — D(Rpy — DRy — 1)
+ (R — DRy — D(Ryy — 1)
+ Ry — DR} — D(Rpyy — 1)
+ (R} = D(Riy — DRy — 1. (113)

If we then replace u(h, k) by its approximate value [equation

(54)],
N?u(h, k) >~ (R} —
+ (Ry —

D(Ris — D + (R — D(Rg — 1)
DR = D),

and insert these approximate expressions back into equation
(110), then we can see that there is strong evidence that
cos(p, + ¢, + 93 —¢,) is  probably  negative  when
Ry = Ry = Ry, = 0and large Ry, Ry, R, Ry ., which is
in perfect agreement with numerical tests (see e.g. Giacovazzo,
1976).

Note that formula (112) is also the formula for the quartet
given only its first neighborhood Ry, Ry, R,, Ry 4!

(114)

8. Conclusion and some numerical tests
8.1. Approximate formulas for N3u (h, k, I) and N?u(h, k)

We have considered a structure with 100 atoms (N = 100).
We took a random sample of 400 triplets and quartets. In

almost all cases we could approximate N> u(h, k, I) by formula
(113),

It is also interesting to note that the right-hand side of equa-
tion (116) is the exact result of A(h, k) [equation (75)] when
we take f(u,, v,) = 1 instead of formula (60) (see the end of

§5).

o C(

8.2. Numerical tests for the linearized invariants method

We used a struture of 100 atoms (N = 100), 8000 structure
factors (M = 8000) and a random sample of 400 triplets. We
tested formula (74) with A(h, k) given by equation (77):

P(Y) o exp[2Ry Ry Ry 1 A(h, k) cos Y],

Alh, k) = (1/N")IR + B + Ry — 2+ (R — (R, — 1)

+ (R — D(Rpye — D + (R — D(Rpsy — D). (117)
Then
RS e T
Let
= ¢h+ O — Pnpx- (119)
We define
Yeare = €08~ ((cos 1)), (120)

where cos™! is the inverse of cos with values in [0, 77]. We also

consider

(121)

¢ = cos '(cos ).

Then we found the empirical probabilities for the case

2R, Ry Ry A(h, K)| > 6 (Y, < 24°):
Prob(|Y . — ¢'| < 80°) =0.8,
Prob(|¥,. — ¢'| <30°) =0.5. (122)

100% of the calculated A(h, k) had a positive sign and 75% of
the calculated (cos /) had the same sign as cos ¢. This shows
that, although A(h, k) can take on negative values for large
Ry Ry R, . this situation rarely happens.

8.3. Numerical tests for the SAD method for both triplet and
quartet

Here the results were disappointing, due to sign mismatches
between the calculated cosine and the true cosine. Apparently
the B;, (Bj,) formula fails to predict the correct sign (as we
shall see below).

8.3.1. Triplet. As already stated in §8.1 N?u(h, k) can be
approximated by the right-hand side of equation (116). We

N pu(h, k1) =~ (Ry — D(Ri g — D(Rpygen — 1 tested equation (52),
+ (Ry — DRy — D(Ry, — 1) _ m(h, k) B
+ (R = DR = D(Ra = 1) Pr(@) o exp [ZW *"} (123)
R — D(Rgyy — D(Rpyxn — 1, (115
(& = DRy = DR =D, (W15
1 i 2iu(h, k fi la (54
and we could approximate N*u(h, k) by formula (54), m(h, k) = (1/N')[R: + R + R =24 (R~ 1R~ 1)
N pa(h, k) = (R — D(Ryy — 1) + (R — DRy — 1) TR = 1D(Ry — 1) + (R — DRy — 1)) (124)
+ (Ry = D(Ryy — 1. (116)
Let
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¢calc = COS?1(<COS ¢))
h, k h, k
— cos ! {]1 |:2m(’)i|/10 |:2m(’)i| } (125)
Ry Ry Ry, 1 Ry Ry Ry, 1

(126)

and

¢’ = cos ™! (cos ) with ¢ = @, + ¢, — Py,

N =100 and M = 8000.
Case A (random sample of 400 triplets): Ry, R R}, > 0 and
|2[m(h’ k)/RthRh+k]| Z 6 ((/_)calc S 240)'

Prob(|@.,. — ¢'| <130°) = 0.8,

Prob(|¢e,. — ¢| <70°) = 0.5. (127)

53% of the calculated cosines had the same sign as the real
cosine and 32% of the calculated cosines had a negative sign.

Case B (random sample of 400 triplets): R R, R, > 0 and
12[m(h, K)/Ry Ry Ry 1]l = 2 (@eare < 45°).

Prob(|@.,. — ¢'| < 110°) = 0.8,

Prob(|@.,. — ¢'| < 60°) =0.5. (128)

54% of the calculated cosines had the same sign as the real
cosine and 43% of the calculated cosines had a negative sign.

Case C (random sample of 70 triplets): R, R, Ry, = 0.5 and
12[m(h, K)/ Ry Ry Ry, i ]l = 2 (Geae < 45°).

Prob(|@.,. — ¢'| <90°) = 0.82,

Prob(|@.,. — ¢'| < 40°) = 0.54. (129)

No negative calculated cosines. 57% of the calculated cosines
had the same sign as the real cosine. These results are slightly
better than Case B.

Case D (random sample of 100 triplets). We now test the
formula P/(¢) o exp[2m(h, lf) cos ¢] that we obtain if we set in
equation (20) R, = R,(R})"*,.... We tested it for
|2m(h, k)| > 3. We obtained

PrOb(|¢calc - §0/| = 500) = 087

Prob(|@e. — ¢/] < 25°) = 0.5. (130)

82% of the calculated cosines had the same sign as the real
cosine, none of the calculated cosines had a negative sign. We
call this P/(¢) a rescaled formula.

8.3.2. Quartet. We tested formula (112)

where we used equations (115) and (116). We used a structure
of 100 atoms (N = 100) and 8000 structure factors (M = 8000).
Let
(/_)calc = COS?] ((COS @))

— cos~! {11 |:2 (RiR,R3R, cos(@y + @ + @5 — @) ]

R,R,R;R,
Ao s a A A Al
< Il2 (RiR,RyR, cos(@y + ¢, + ¢3 — @4))
0 R,R,R;R,
(133)
and
¢ = cos™'(cos @) with ¢ = ¢, + @, + @3 — @,. (134)

Case E (400 random quartets). [2[(R,R,R;R, cos(, + &,
+ @3 — @)/ RIRR3R]| = 6 (@ < 24°).

Prob(|@,. — ¢'| <120°) = 0.8,

Prob(|@.,. — ¢'| <70°) = 0.54. (135)

50% of the cosines of the quartets had the same sign as the
real cosine and 33% of the cosines had a negative sign.

8.4. Conclusions

(1) The method of linearized invariants gives acceptable
results.

(2) The SAD method gives disappointing results (now) (but
see Case C of the triplet). Clearly the B; ; (B} ) and B, (B, )
formulas fail to compute the correct sign of the cosine: about
50% of the calculated results gave the same sign. To improve
the formula obtained with the SAD method we suggest
calculating the j.p.d. of structure factors to higher order in
inverse powers of u!/2, We hope to present these formulas in
the future.

(3) Modified (rescaled) formulas (see case D of the triplet)
can also give acceptable results.

APPENDIX A
Some useful formulas

- <R1R2R3R4 cos(@y + @, + @3 — @) - 2
P(p) = exp [2 R.R,R.R, cos(¢) |, [ exp[—ipcos(6 — )] cos[n(6 + )] df
0
(131) = (=i)"270],(p) cosln(p + ). (136)
where [see equation (110)]
(R\R,RyR, cos(@, + ¢, + @5 — §)) [ "t exp(—50°),(pR) dp = 2" R" exp(—R?). (137)
1 0
= Bu+ R+ R+ Riions  Rusc + Riy + Riyy =)
n (N — 13\(}N -2) [0, 1) + (1) + k. ) [ exp(—1p?)p? 1, (pR) dp = 22+l exp(— RP)RFLE(R?).
0
+ puth+k, 1)+ wth + 1L k) + w(h, k +1)] (138)
(N —1)(N —2)(N —3)
+ N (b, Kk, 1), (132) L5(z) = (1/n!) exp(x)x ™ (d"/dx") [exp(—x)x"*].  (139)
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L) = Z(—l)’"(jf,’;) .
L,(z) = Ly(2).
Ly(2) = 1 = Lg(2).
Li(z)=1-z.

L,(z) =1—2z4z7%/2.

7.(p) ~ (2/7p)""* cos(p — n/2 — 7/4) for large p.

J.(=p) = (=1)",(p).

exp(iz cos ) = Jo(z) +2 > i*J,(2) cos(ky).
=t

n oo (_1)k 2k
10=(5) Laoeals)

k=0
Jo() =1—/H2 + /)7 — .. ..

J,(2) =(z/2) — (%/8) + ...

[ exp(ibx) exp(—x?) dx = (27)"/* exp(—1b?).

—00

oo

(140)

(141)
(142)
(143)
(144)
(145)

(146)

(147)

(148)

(149)

(150)

(151)

[ ()" exp(—iuE) exp(—w?) du = (2m)"* exp(—LE*)H,(E).

—0o0

(152)

Hy(x) = 1.
H(x) = x.
Hy(x) =x* — 1.

H,(x) = x° — 3x.
H,(x) = x* — 6x* + 3.

Hy(x) = x> — 10x® + 15x.

[ xexp(ibx) exp(—ix?) dx = (27)"%ib exp(—1b?).

—00

(153)
(154)
(155)
(156)
(157)

(158)

(159)

Ofo x% exp(ibx) exp(—x?) dx = (27)*(1 — b?) exp(—1b?).

—00

Inl+x)=x—x*/24+x/3—... for|x|<1.
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